MaGGIe excels in hair rendering and instance separation on natural images, outperforming MGM and InstMatt in complex, multi-instance scenarios.MaGGIe excels in hair rendering and instance separation on natural images, outperforming MGM and InstMatt in complex, multi-instance scenarios.

Robust Mask-Guided Matting: Managing Noisy Inputs and Object Versatility

Abstract and 1. Introduction

  1. Related Works

  2. MaGGIe

    3.1. Efficient Masked Guided Instance Matting

    3.2. Feature-Matte Temporal Consistency

  3. Instance Matting Datasets

    4.1. Image Instance Matting and 4.2. Video Instance Matting

  4. Experiments

    5.1. Pre-training on image data

    5.2. Training on video data

  5. Discussion and References

\ Supplementary Material

  1. Architecture details

  2. Image matting

    8.1. Dataset generation and preparation

    8.2. Training details

    8.3. Quantitative details

    8.4. More qualitative results on natural images

  3. Video matting

    9.1. Dataset generation

    9.2. Training details

    9.3. Quantitative details

    9.4. More qualitative results

8.4. More qualitative results on natural images

Fig. 13 showcases our model’s performance in challenging scenarios, particularly in accurately rendering hair regions. Our framework consistently outperforms MGM⋆ in detail preservation, especially in complex instance interactions. In comparison with InstMatt, our model exhibits superior instance separation and detail accuracy in ambiguous regions.

\ Fig. 14 and Fig. 15 illustrate the performance of our model and previous works in extreme cases involving multiple instances. While MGM⋆ struggles with noise and accuracy in dense instance scenarios, our model maintains high precision. InstMatt, without additional training data, shows limitations in these complex settings.

\ The robustness of our mask-guided approach is further demonstrated in Fig. 16. Here, we highlight the challenges faced by MGM variants and SparseMat in predicting missing parts in mask inputs, which our model addresses. However, it is important to note that our model is not designed as a human instance segmentation network. As shown in Fig. 17, our framework adheres to the input guidance, ensuring precise alpha matte prediction even with multiple instances in the same mask.

\ Lastly, Fig. 12 and Fig. 11 emphasize our model’s generalization capabilities. The model accurately extracts both human subjects and other objects from backgrounds, showcasing its versatility across various scenarios and object types.

\ All examples are Internet images without ground-truth and the mask from r101fpn400e are used as the guidance.

\ Figure 13. Our model produces highly detailed alpha matte on natural images. Our results show that it is accurate and comparable with previous instance-agnostic and instance-awareness methods without expensive computational costs. Red squares zoom in the detail regions for each instance. (Best viewed in color and digital zoom).

\ Figure 14. Our frameworks precisely separate instances in an extreme case with many instances. While MGM often causes the overlapping between instances and MGM⋆ contains noises, ours produces on-par results with InstMatt trained on the external dataset. Red arrow indicates the errors. (Best viewed in color and digital zoom).

\ Figure 15. Our frameworks precisely separate instances in a single pass. The proposed solution shows comparable results with InstMatt and MGM without running the prediction/refinement five times. Red arrow indicates the errors. (Best viewed in color and digital zoom).

\ Figure 16. Unlike MGM and SparseMat, our model is robust to the input guidance mask. With the attention head, our model produces more stable results to mask inputs without complex refinement between instances like InstMatt. Red arrow indicates the errors. (Best viewed in color and digital zoom).

\ Figure 17. Our solution works correctly with multi-instance mask guidances. When multiple instances exist in one guidance mask, we still produce the correct union alpha matte for those instances. Red arrow indicates the errors or the zoom-in region in red box. (Best viewed in color and digital zoom).

\ Table 12. Details of quantitative results on HIM2K+M-HIM2K (Extension of Table 5). Gray indicates the public weight without retraining.

\ Table 12. Details of quantitative results on HIM2K+M-HIM2K (Extension of Table 5). Gray indicates the public weight without retraining. (Continued)

\ Table 12. Details of quantitative results on HIM2K+M-HIM2K (Extension of Table 5). Gray indicates the public weight without retraining. (Continued)

\ Table 12. Details of quantitative results on HIM2K+M-HIM2K (Extension of Table 5). Gray indicates the public weight without retraining. (Continued)

\ Table 13. The effectiveness of proposed temporal consistency modules on V-HIM60 (Extension of Table 6). The combination of bi-directional Conv-GRU and forward-backward fusion achieves the best overall performance on three test sets. Bold highlights the best for each level.

\

:::info Authors:

(1) Chuong Huynh, University of Maryland, College Park (chuonghm@cs.umd.edu);

(2) Seoung Wug Oh, Adobe Research (seoh,jolee@adobe.com);

(3) Abhinav Shrivastava, University of Maryland, College Park (abhinav@cs.umd.edu);

(4) Joon-Young Lee, Adobe Research (jolee@adobe.com).

:::


:::info This paper is available on arxiv under CC by 4.0 Deed (Attribution 4.0 International) license.

:::

\

Market Opportunity
Mask Network Logo
Mask Network Price(MASK)
$0.5755
$0.5755$0.5755
+0.36%
USD
Mask Network (MASK) Live Price Chart
Disclaimer: The articles reposted on this site are sourced from public platforms and are provided for informational purposes only. They do not necessarily reflect the views of MEXC. All rights remain with the original authors. If you believe any content infringes on third-party rights, please contact service@support.mexc.com for removal. MEXC makes no guarantees regarding the accuracy, completeness, or timeliness of the content and is not responsible for any actions taken based on the information provided. The content does not constitute financial, legal, or other professional advice, nor should it be considered a recommendation or endorsement by MEXC.

You May Also Like

BlackRock boosts AI and US equity exposure in $185 billion models

BlackRock boosts AI and US equity exposure in $185 billion models

The post BlackRock boosts AI and US equity exposure in $185 billion models appeared on BitcoinEthereumNews.com. BlackRock is steering $185 billion worth of model portfolios deeper into US stocks and artificial intelligence. The decision came this week as the asset manager adjusted its entire model suite, increasing its equity allocation and dumping exposure to international developed markets. The firm now sits 2% overweight on stocks, after money moved between several of its biggest exchange-traded funds. This wasn’t a slow shuffle. Billions flowed across multiple ETFs on Tuesday as BlackRock executed the realignment. The iShares S&P 100 ETF (OEF) alone brought in $3.4 billion, the largest single-day haul in its history. The iShares Core S&P 500 ETF (IVV) collected $2.3 billion, while the iShares US Equity Factor Rotation Active ETF (DYNF) added nearly $2 billion. The rebalancing triggered swift inflows and outflows that realigned investor exposure on the back of performance data and macroeconomic outlooks. BlackRock raises equities on strong US earnings The model updates come as BlackRock backs the rally in American stocks, fueled by strong earnings and optimism around rate cuts. In an investment letter obtained by Bloomberg, the firm said US companies have delivered 11% earnings growth since the third quarter of 2024. Meanwhile, earnings across other developed markets barely touched 2%. That gap helped push the decision to drop international holdings in favor of American ones. Michael Gates, lead portfolio manager for BlackRock’s Target Allocation ETF model portfolio suite, said the US market is the only one showing consistency in sales growth, profit delivery, and revisions in analyst forecasts. “The US equity market continues to stand alone in terms of earnings delivery, sales growth and sustainable trends in analyst estimates and revisions,” Michael wrote. He added that non-US developed markets lagged far behind, especially when it came to sales. This week’s changes reflect that position. The move was made ahead of the Federal…
Share
BitcoinEthereumNews2025/09/18 01:44
SICAK GELİŞME: Binance, Üç Altcoini Vadeli İşlemlerde Listeliyor!

SICAK GELİŞME: Binance, Üç Altcoini Vadeli İşlemlerde Listeliyor!

Kripto para borsası Binance, ZKP, GUA ve IR tokenlerini vadeli işlemler platformunda listeleyeceğini açıkladı. *Yatırım tavsiyesi değildir. Kaynak: Bitcoinsistemi
Share
Coinstats2025/12/21 16:41
USDC Treasury mints 250 million new USDC on Solana

USDC Treasury mints 250 million new USDC on Solana

PANews reported on September 17 that according to Whale Alert , at 23:48 Beijing time, USDC Treasury minted 250 million new USDC (approximately US$250 million) on the Solana blockchain .
Share
PANews2025/09/17 23:51