JEOLLANAM-DO PROVINCE, South Korea, Dec. 18, 2025 /PRNewswire/ — Single-phase power factor correction (PFC) circuits—a kind of front-end AC/DC converters—are ubiquitousJEOLLANAM-DO PROVINCE, South Korea, Dec. 18, 2025 /PRNewswire/ — Single-phase power factor correction (PFC) circuits—a kind of front-end AC/DC converters—are ubiquitous

Chonnam National University Researchers Propose Innovative Voltage-Loop Control for Power Factor Correction

JEOLLANAM-DO PROVINCE, South Korea, Dec. 18, 2025 /PRNewswire/ — Single-phase power factor correction (PFC) circuits—a kind of front-end AC/DC converters—are ubiquitous in a variety of consumer electronic devices, including laptop adapters, LED driver power supplies, and portable chargers. They enhance the current quality drawn from the source, delivering stable DC voltage with high efficiency.

However, current sensors in traditional boost PFC converters introduce issues such as noise susceptibility, signal delays, increased hardware complexity, and potential sensor failures that can degrade system reliability and lifespan. By eliminating current sensors, the proposed sensorless strategy reduces these risks, improves noise immunity, and decreases hardware failure points, leading to enhanced reliability and potentially longer-lasting power adapters and consumer electronics.

In a remarkable breakthrough achievement, a team of researchers from South Korea and China, led by Sung-Jun Park, a Professor from the Department of Electrical Engineering at Chonnam National University, has successfully demonstrated a new control method that eliminates the need for a current sensor. Their findings were made available online and have been published in the journal IEEE Transactions on Consumer Electronics on 30 September 2025.

In this study, the team proposes a simple and reliable single voltage loop current sensorless PFC control strategy. They derive the expression for the duty cycle—which consists of a feedforward component and a control component—by leveraging the fundamental equation of inductor voltage. Notably, delay compensation helps mitigate the effect of phase delay on input current distortion in the proposed control strategy.

“In this way, we specifically identified and solved a common issue in digital control systems: phase delay caused by signal processing. This delay distorts the input current. Our built-in compensation technique effectively counteracts this, which is a key reason for our method’s high-power quality,” remarks Prof. Park.

The novel technology eliminates complex observers and mathematical models, resulting in lower component cost, simpler circuit design, and a smaller size. This reduces maintenance by minimizing parts prone to wear or recalibration, enhancing long-term efficiency compared to sensor-based solutions. Additionally, its low sensitivity to circuit parameter variations ensures reliability and suitability for mass production, allowing manufacturers to easily integrate the control strategy into existing production lines using standard digital signal processors without major redesign or added inventory.

This technology suits AC/DC power supplies in consumer electronics, validated on a 1.3 kW prototype achieving near-unity power factor (up to 0.9998) and low total harmonic distortion (THD) (2.12% at full load)—matching or exceeding sensor-based methods. By eliminating sensors and components, it enables smaller, cost-effective designs. Prof. Park explains, “By simplifying the power circuitry and reducing component count, chargers and power adapters for everything from laptops to kitchen appliances can become more compact and portable. As millions of electronic devices draw cleaner, sinusoidal current—with high power factor and low THD—from the wall socket, it reduces stress on the power grid. Lastly, cheaper and more reliable power supplies could mean lower upfront costs for consumers, furthering electric vehicles and renewable energy systems.”

Reference
Title of original paper: A Simple Current Sensorless Control Method for Boost PFC
Journal: IEEE Transactions on Consumer Electronics
DOI: 10.1109/TCE.2025.3615203

About the institute
https://global.jnu.ac.kr/jnumain_en.aspx

Media Contact:
Minji Son
82-62-530-5191
406532@email4pr.com

Cision View original content to download multimedia:https://www.prnewswire.com/news-releases/chonnam-national-university-researchers-propose-innovative-voltage-loop-control-for-power-factor-correction-302646127.html

SOURCE Chonnam National University

Market Opportunity
LoopNetwork Logo
LoopNetwork Price(LOOP)
$0,01011
$0,01011$0,01011
+0,79%
USD
LoopNetwork (LOOP) Live Price Chart
Disclaimer: The articles reposted on this site are sourced from public platforms and are provided for informational purposes only. They do not necessarily reflect the views of MEXC. All rights remain with the original authors. If you believe any content infringes on third-party rights, please contact service@support.mexc.com for removal. MEXC makes no guarantees regarding the accuracy, completeness, or timeliness of the content and is not responsible for any actions taken based on the information provided. The content does not constitute financial, legal, or other professional advice, nor should it be considered a recommendation or endorsement by MEXC.

You May Also Like

Satoshi-Era Mt. Gox’s 1,000 Bitcoin Wallet Suddenly Reactivated

Satoshi-Era Mt. Gox’s 1,000 Bitcoin Wallet Suddenly Reactivated

The post Satoshi-Era Mt. Gox’s 1,000 Bitcoin Wallet Suddenly Reactivated appeared on BitcoinEthereumNews.com. X account @SaniExp, which belongs to the founder of the Timechain Index explorer, has published data showing that a dormant BTC wallet was activated after hibernating for six years. However, it was set up 13 years ago, according to the tweet — the time when Satoshi Nakamoto’s shadow was still casting itself around, so to speak. The X post states that the tweet belongs to infamous early Bitcoin exchange Mt. Gox, which suffered from a major hack in the early 2010s, and last year it began paying out compensation to clients who lost their crypto in that hack. The deadline was eventually extended to October 2025. Mt. Gox’s wallet with 1,000 BTC reactivated The above-mentioned data source shared a screenshot from the Timechain Index explorer, showing multiple transactions marked as confirmed and moving a total of 1,000 Bitcoins. This amount of crypto is valued at $116,195,100 at the time of the initiated transaction. Last year, Mt. Gox began to move the remains of its gargantuan funds to pay out compensations to its creditors. Earlier this year, it also made several massive transactions to partner exchanges to distribute funds to Mt. Gox investors. All of the compensations were promised to be paid out by Oct. 31, 2025. The aforementioned transaction is likely preparation for another payout. The exchange was hacked for several years due to multiple unnoticed security breaches, and in 2014, when the site went offline, 744,408 Bitcoins were reported stolen. Source: https://u.today/satoshi-era-mtgoxs-1000-bitcoin-wallet-suddenly-reactivated
Share
BitcoinEthereumNews2025/09/18 10:18
Zycus Launches Industry-First AI Adoption Index to Measure Real-World AI Maturity in Procurement

Zycus Launches Industry-First AI Adoption Index to Measure Real-World AI Maturity in Procurement

Princeton, NJ | Dec 26th, 2025 — Zycus, a global leader in AI-powered Source-to-Pay (S2P) solutions, today announced the launch of the AI Adoption Index for Procurement
Share
Techbullion2025/12/26 17:57
Soccer Replica Jerseys – Kits, Customization, and Best Practices for Caring for Them

Soccer Replica Jerseys – Kits, Customization, and Best Practices for Caring for Them

Today’s soccer jersey is more than just athletic clothing; it is a representation of loyalty, a statement of fashion, and an example of technical development. The
Share
Techbullion2025/12/26 18:04