The post Ray’s Disaggregated Hybrid Parallelism Boosts Multimodal AI Training by 30% appeared on BitcoinEthereumNews.com. Iris Coleman Dec 10, 2025 01:06 Ray’s innovative disaggregated hybrid parallelism significantly enhances multimodal AI training efficiency, achieving up to 1.37x throughput improvement and overcoming memory challenges. In a significant advancement for artificial intelligence training, Ray has introduced a disaggregated hybrid parallelism approach that accelerates the training of multimodal AI models by 30%, according to Anyscale. This development addresses the complexities and computational challenges of training models that process diverse data types such as text, images, and audio. Challenges in Multimodal AI Training Multimodal AI models, unlike traditional homogeneous large language models, consist of specialized modules with varying computational and memory needs. Vision-Language Models (VLMs), for example, integrate a vision encoder with a large language model (LLM). This integration results in architectural complexities, particularly when dealing with high-resolution images and long sequences. Traditional techniques like tensor parallelism and DeepSpeed ZeRO3 often fall short, resulting in inefficiencies and potential out-of-memory errors. Ray’s Innovative Approach Ray’s disaggregated hybrid parallelism leverages the flexibility of its universal framework, enabling tailored parallelization strategies for each module within a multimodal model. By utilizing Ray’s actor-based architecture, developers can allocate resources independently, optimizing for the unique requirements of each module. This results in a more efficient orchestration of complex workloads, as demonstrated with the Qwen-VL 32B model. Benchmarking and Performance In tests conducted with the Qwen-VL 32B model, Ray’s approach showed up to a 1.37x improvement in throughput compared to traditional methods. The strategy combined sequence parallelism for the vision encoder with tensor parallelism for the LLM, effectively managing memory and computational demands across different modules. This method not only improved speed but also enabled the training of sequences up to 65,000 tokens long, surpassing the capabilities of DeepSpeed ZeRO3 which encountered memory issues at 16,000 tokens. Future Prospects… The post Ray’s Disaggregated Hybrid Parallelism Boosts Multimodal AI Training by 30% appeared on BitcoinEthereumNews.com. Iris Coleman Dec 10, 2025 01:06 Ray’s innovative disaggregated hybrid parallelism significantly enhances multimodal AI training efficiency, achieving up to 1.37x throughput improvement and overcoming memory challenges. In a significant advancement for artificial intelligence training, Ray has introduced a disaggregated hybrid parallelism approach that accelerates the training of multimodal AI models by 30%, according to Anyscale. This development addresses the complexities and computational challenges of training models that process diverse data types such as text, images, and audio. Challenges in Multimodal AI Training Multimodal AI models, unlike traditional homogeneous large language models, consist of specialized modules with varying computational and memory needs. Vision-Language Models (VLMs), for example, integrate a vision encoder with a large language model (LLM). This integration results in architectural complexities, particularly when dealing with high-resolution images and long sequences. Traditional techniques like tensor parallelism and DeepSpeed ZeRO3 often fall short, resulting in inefficiencies and potential out-of-memory errors. Ray’s Innovative Approach Ray’s disaggregated hybrid parallelism leverages the flexibility of its universal framework, enabling tailored parallelization strategies for each module within a multimodal model. By utilizing Ray’s actor-based architecture, developers can allocate resources independently, optimizing for the unique requirements of each module. This results in a more efficient orchestration of complex workloads, as demonstrated with the Qwen-VL 32B model. Benchmarking and Performance In tests conducted with the Qwen-VL 32B model, Ray’s approach showed up to a 1.37x improvement in throughput compared to traditional methods. The strategy combined sequence parallelism for the vision encoder with tensor parallelism for the LLM, effectively managing memory and computational demands across different modules. This method not only improved speed but also enabled the training of sequences up to 65,000 tokens long, surpassing the capabilities of DeepSpeed ZeRO3 which encountered memory issues at 16,000 tokens. Future Prospects…

Ray’s Disaggregated Hybrid Parallelism Boosts Multimodal AI Training by 30%

2025/12/11 02:08


Iris Coleman
Dec 10, 2025 01:06

Ray’s innovative disaggregated hybrid parallelism significantly enhances multimodal AI training efficiency, achieving up to 1.37x throughput improvement and overcoming memory challenges.

In a significant advancement for artificial intelligence training, Ray has introduced a disaggregated hybrid parallelism approach that accelerates the training of multimodal AI models by 30%, according to Anyscale. This development addresses the complexities and computational challenges of training models that process diverse data types such as text, images, and audio.

Challenges in Multimodal AI Training

Multimodal AI models, unlike traditional homogeneous large language models, consist of specialized modules with varying computational and memory needs. Vision-Language Models (VLMs), for example, integrate a vision encoder with a large language model (LLM). This integration results in architectural complexities, particularly when dealing with high-resolution images and long sequences. Traditional techniques like tensor parallelism and DeepSpeed ZeRO3 often fall short, resulting in inefficiencies and potential out-of-memory errors.

Ray’s Innovative Approach

Ray’s disaggregated hybrid parallelism leverages the flexibility of its universal framework, enabling tailored parallelization strategies for each module within a multimodal model. By utilizing Ray’s actor-based architecture, developers can allocate resources independently, optimizing for the unique requirements of each module. This results in a more efficient orchestration of complex workloads, as demonstrated with the Qwen-VL 32B model.

Benchmarking and Performance

In tests conducted with the Qwen-VL 32B model, Ray’s approach showed up to a 1.37x improvement in throughput compared to traditional methods. The strategy combined sequence parallelism for the vision encoder with tensor parallelism for the LLM, effectively managing memory and computational demands across different modules. This method not only improved speed but also enabled the training of sequences up to 65,000 tokens long, surpassing the capabilities of DeepSpeed ZeRO3 which encountered memory issues at 16,000 tokens.

Future Prospects

The success of Ray’s disaggregated hybrid parallelism in enhancing AI training efficiency paves the way for its application across larger GPU clusters and diverse hardware setups. Its ability to adapt to various multimodal architectures highlights its potential for broader implementation in AI development.

For those interested in exploring this innovative approach, Ray’s implementation is available for experimentation and feedback on their GitHub repository.

Image source: Shutterstock

Source: https://blockchain.news/news/rays-disaggregated-hybrid-parallelism-boosts-multimodal-ai-training

Market Opportunity
Raydium Logo
Raydium Price(RAY)
$0.9478
$0.9478$0.9478
-2.81%
USD
Raydium (RAY) Live Price Chart
Disclaimer: The articles reposted on this site are sourced from public platforms and are provided for informational purposes only. They do not necessarily reflect the views of MEXC. All rights remain with the original authors. If you believe any content infringes on third-party rights, please contact service@support.mexc.com for removal. MEXC makes no guarantees regarding the accuracy, completeness, or timeliness of the content and is not responsible for any actions taken based on the information provided. The content does not constitute financial, legal, or other professional advice, nor should it be considered a recommendation or endorsement by MEXC.

You May Also Like

Binance Whale Loses $11.58 Million as Bitcoin Crashes Below $86,000

Binance Whale Loses $11.58 Million as Bitcoin Crashes Below $86,000

A major trader on Binance suffered an $11.58 million liquidation on a BTC/USDT long position as Bitcoin plunged below the $86,000 level. The entire position was wiped out in a single order, demonstrating the unforgiving nature of leveraged cryptocurrency trading during periods of intense selling pressure.
Share
MEXC NEWS2025/12/16 14:39
Tom Lee: Crypto's Best Years Lie Ahead as Adoption Gap Reveals Massive Growth Potential

Tom Lee: Crypto's Best Years Lie Ahead as Adoption Gap Reveals Massive Growth Potential

Tom Lee, co-founder and head of research at Fundstrat Global Advisors, has offered a compelling framework for understanding Bitcoin's growth runway. His analysis centers on a stark comparison: only 4 million Bitcoin wallets currently hold $10,000 or more, while approximately 900 million IRA and brokerage accounts globally contain at least that amount.
Share
MEXC NEWS2025/12/16 14:46
Solana’s (SOL) Recent Rally May Impress, But Investors Targeting Life-Changing ROI Are Looking Elsewhere

Solana’s (SOL) Recent Rally May Impress, But Investors Targeting Life-Changing ROI Are Looking Elsewhere

The post Solana’s (SOL) Recent Rally May Impress, But Investors Targeting Life-Changing ROI Are Looking Elsewhere appeared on BitcoinEthereumNews.com. Solana’s (SOL) latest rally has attracted investors from all over, but the bigger story for vision-minded investors is where the next surges of life-altering returns are heading.  As Solana continues to see high levels of ecosystem usage and network utilization, the stage is slowly being set for Mutuum Finance (MUTM).  MUTM is priced at $0.035 in its fast-growing presale. Price appreciation of 14.3% is what the investors are going to anticipate in the next phase. Over $15.85 million has been raised as the presale keeps gaining momentum. Unlike the majority of the tokens surfing short-term waves of hype, Mutuum Finance is becoming a utility-focused choice with more value potential and therefore an increasingly better option for investors looking for more than price action alone. Solana Maintains Gains Near $234 As Speculation Persists Solana (SOL) is trading at $234.08 currently, holding its 24hr range around $234.42 to $248.19 as it illustrates the recent trend. The token has recorded strong seven-day gains of nearly 13%, far exceeding most of its peers, as it is supported by rising volume and institutional buying. Resistance is at $250-$260, and support appears to be at $220-$230, and thus these are significant levels for potential breakout or pullback.  However, new DeFi crypto Mutuum Finance, is being considered by market watchers to have more upside potential, being still in presale.  Mutuum Finance Phase 6 Presale Mutuum Finance is currently in Presale Stage 6 and offering tokens for $0.035. Presale has been going on very fast, and investors have raised over $15.85 million. The project also looks forward to a USD-pegged stablecoin on the Ethereum blockchain for convenient payments and as a keeper of long-term value. Mutuum Finance is a dual-lending, multi-purpose DeFi platform that benefits borrowers and lenders alike. It provides the network to retail as well as…
Share
BitcoinEthereumNews2025/09/18 06:23