Topliner uses AI to assess candidate relevance for executive search projects. GPT-4o is among the sharpest knives in the drawer, but it sometimes goes rogue. xAI’s new Grok-4 Fast Reasoning model promised speed, affordability, and smart reasoning.Topliner uses AI to assess candidate relevance for executive search projects. GPT-4o is among the sharpest knives in the drawer, but it sometimes goes rogue. xAI’s new Grok-4 Fast Reasoning model promised speed, affordability, and smart reasoning.

I Benchmarked 9 AI Models for Candidate Screening—Then Switched from GPT-4o to Grok-4

2025/09/29 19:15

At Topliner, we use AI to assess candidate relevance for executive search projects. Specifically, we rely on GPT-4o, because, well… at the time it was among the sharpest knives in the drawer.

And to be fair, it mostly works. Mostly.

The problem? Every now and then, GPT-4o goes rogue. It decides that a perfectly relevant candidate should be tossed aside, or that someone utterly irrelevant deserves a golden ticket. It’s like flipping a coin, but with a fancy API. Predictability is out the window, and in our line of work, that’s unacceptable.

So, I started wondering: is it time to move on?

Ideally, the new model should be available on Microsoft Azure (we’re already tied into their infrastructure, plus shoutout to Microsoft for the free tokens - still running on those, thanks guys). But if not, any other model that gets the job done would do.

Here’s what matters to us:

  1. Accuracy – Top priority. If we run the same candidate profile through the system twice, the model should not say “yes” once and “no” the next time. Predictability and correctness are everything.
  2. Speed – If it thinks too long, the whole pipeline slows down. GPT-4o’s ~1.2 seconds per response is a pretty good benchmark.
  3. Cost – Ideally cheaper than GPT-4o. If it’s a lot cheaper, even better.

Recently, I stumbled upon xAI’s new Grok-4 Fast Reasoning model, which promised speed, affordability, and smart reasoning. Naturally, I put it to the test.

\

The Setup

I designed a test around one “problem candidate profile” - a case where GPT-4o typically fails. The prompt asked the model to decide if a candidate had ever held a role equivalent to “CFO / Chief Financial Officer / VP Finance / Director Finance / SVP Finance” at SpaceX (with all the expected variations in title, scope, and seniority).

Here’s the prompt I used:

Evaluate candidate's eligibility based on the following criteria.   Evaluate whether this candidate has ever held a role that matches or is equivalent to 'CFO OR Chief Financial Officer OR VP Finance OR Director Finance OR SVP Finance' at 'SpaceX'.  Consider variations of these titles, related and relevant positions that are similar to the target role(s).   When making this evaluation, consider:  - Variations in how the role title may be expressed.  - Roles with equivalent or similar or close or near scope of responsibilities and seniority level.  - The organizational context, where titles may reflect different levels of responsibility depending on the company's structure.   If the candidate's role is a direct or reasonable equivalent to the target title(s), set targetRoleMatch = true.  If it is unrelated or clearly much below the intended seniority level, set targetRoleMatch = false.   Return answer: true only if targetRoleMatch = true.  In all other cases return answer: false.   Candidate's experience: [here is context about a candidate] 

Simple in theory, but a surprisingly effective way to separate models that understand nuance from those that hallucinate or guess.

I ran the experiment across 9 different models, including:

  • All the latest OpenAI releases: GPT-4o, GPT-4.1, GPT-5 Mini, GPT-5 Nano, GPT-5 (August 2025), plus o3-mini and o4-mini.

  • xAI’s Grok-3 Mini and Grok-4 Fast Reasoning.

    \

Final Comparison Across All Models

📊 Performance Ranking (by average response time):

  1. Azure OpenAI GPT-4o: 1.26s (avg), 0.75-1.98s (range), 1/10 correct (10%), $12.69 per 1000 req
  2. Azure OpenAI o4-mini: 2.68s (avg), 1.84-3.53s (range), 10/10 correct (100%), $5.47 per 1000 req
  3. xAI Grok-4 Fast Reasoning: 2.83s (avg), 2.39-4.59s (range), 10/10 correct (100%), $0.99 per 1000 req
  4. OpenAI GPT-4.1: 3.58s (avg), 2.66-5.05s (range), 0/10 correct (0%), $10.80 per 1000 req
  5. Azure OpenAI o3-mini: 4.23s (avg), 2.56-5.94s (range), 10/10 correct (100%), $5.53 per 1000 req
  6. xAI Grok-3 Mini: 5.65s (avg), 4.61-6.99s (range), 10/10 correct (100%), $1.47 per 1000 req
  7. OpenAI GPT-5 Nano: 8.04s (avg), 6.46-10.44s (range), 10/10 correct (100%), $0.29 per 1000 req
  8. OpenAI GPT-5 Mini: 9.7s (avg), 5.46-20.84s (range), 10/10 correct (100%), $1.37 per 1000 req
  9. OpenAI GPT-5 2025-08-07: 13.98s (avg), 9.31-21.25s (range), 10/10 correct (100%), $6.62 per 1000 req

🎯 Accuracy Ranking (by correctness percentage):

  1. Azure OpenAI o4-mini: 10/10 correct (100%), 2.68s avg response, $5.47 per 1000 req
  2. xAI Grok-4 Fast Reasoning: 10/10 correct (100%), 2.83s avg response, $0.99 per 1000 req
  3. Azure OpenAI o3-mini: 10/10 correct (100%), 4.23s avg response, $5.53 per 1000 req
  4. xAI Grok-3 Mini: 10/10 correct (100%), 5.65s avg response, $1.47 per 1000 req
  5. OpenAI GPT-5 Nano: 10/10 correct (100%), 8.04s avg response, $0.29 per 1000 req
  6. OpenAI GPT-5 Mini: 10/10 correct (100%), 9.7s avg response, $1.37 per 1000 req
  7. OpenAI GPT-5 2025-08-07: 10/10 correct (100%), 13.98s avg response, $6.62 per 1000 req
  8. Azure OpenAI GPT-4o: 1/10 correct (10%), 1.26s avg response, $12.69 per 1000 req
  9. OpenAI GPT-4.1: 0/10 correct (0%), 3.58s avg response, $10.80 per 1000 req

💰 Cost Efficiency Ranking (by average cost per 1000 requests):

  1. OpenAI GPT-5 Nano: $0.29 per 1000 req, 10/10 correct (100%), 8.04s avg response
  2. xAI Grok-4 Fast Reasoning: $0.99 per 1000 req, 10/10 correct (100%), 2.83s avg response
  3. OpenAI GPT-5 Mini: $1.37 per 1000 req, 10/10 correct (100%), 9.7s avg response
  4. xAI Grok-3 Mini: $1.47 per 1000 req, 10/10 correct (100%), 5.65s avg response
  5. Azure OpenAI o4-mini: $5.47 per 1000 req, 10/10 correct (100%), 2.68s avg response
  6. Azure OpenAI o3-mini: $5.53 per 1000 req, 10/10 correct (100%), 4.23s avg response
  7. OpenAI GPT-5 2025-08-07: $6.62 per 1000 req, 10/10 correct (100%), 13.98s avg response
  8. OpenAI GPT-4.1: $10.80 per 1000 req, 0/10 correct (0%), 3.58s avg response
  9. Azure OpenAI GPT-4o: $12.69 per 1000 req, 1/10 correct (10%), 1.26s avg response

🏆 Overall Leaderboard (Speed + Cost + Accuracy):

🥇 xAI Grok-4 Fast Reasoning: 93.1/100 overall \n ├── Speed: 88/100 (2.83s avg) \n ├── Cost: 94/100 ($0.99 per 1000 req) \n └── Accuracy: 100/100 (10/10 correct)

🥈 xAI Grok-3 Mini: 82.5/100 overall \n ├── Speed: 65/100 (5.65s avg) \n ├── Cost: 90/100 ($1.47 per 1000 req) \n └── Accuracy: 100/100 (10/10 correct)

🥉 Azure OpenAI o4-mini: 80.9/100 overall \n ├── Speed: 89/100 (2.68s avg) \n ├── Cost: 58/100 ($5.47 per 1000 req) \n └── Accuracy: 100/100 (10/10 correct)

  1. OpenAI GPT-5 Nano: 78.8/100 overall \n ├── Speed: 47/100 (8.04s avg) \n ├── Cost: 100/100 ($0.29 per 1000 req) \n └── Accuracy: 100/100 (10/10 correct)
  2. Azure OpenAI o3-mini: 76.1/100 overall \n ├── Speed: 77/100 (4.23s avg) \n ├── Cost: 58/100 ($5.53 per 1000 req) \n └── Accuracy: 100/100 (10/10 correct)
  3. OpenAI GPT-5 Mini: 70.5/100 overall \n ├── Speed: 34/100 (9.7s avg) \n ├── Cost: 91/100 ($1.37 per 1000 req) \n └── Accuracy: 100/100 (10/10 correct)
  4. Azure OpenAI GPT-4o: 42.5/100 overall \n ├── Speed: 100/100 (1.26s avg) \n ├── Cost: 0/100 ($12.69 per 1000 req) \n └── Accuracy: 10/100 (1/10 correct)
  5. OpenAI GPT-5 2025-08-07: 42.2/100 overall \n ├── Speed: 0/100 (13.98s avg) \n ├── Cost: 49/100 ($6.62 per 1000 req) \n └── Accuracy: 100/100 (10/10 correct)
  6. OpenAI GPT-4.1: 38.1/100 overall \n ├── Speed: 82/100 (3.58s avg) \n ├── Cost: 15/100 ($10.80 per 1000 req) \n └── Accuracy: 0/100 (0/10 correct)

Overall Statistics:

🏃‍♂️ Fastest individual response: 0.75 seconds (Azure OpenAI GPT-4o) \n 🐌 Slowest individual response: 21.25 seconds (OpenAI GPT-5 2025-08-07) \n 🎯 Most accurate model: OpenAI GPT-5 Nano (100%) \n ❌ Least accurate model: OpenAI GPT-4.1 (0%) \n 💰 Most expensive model: Azure OpenAI GPT-4o ($12.69 per 1000 req) \n 💎 Most cost-effective model: OpenAI GPT-5 Nano ($0.29 per 1000 req) \n 💵 Total cost for all tests: $0.452

And the winner is….

xAI Grok-4 Fast Reasoning (The Star of the Show)

  • Accuracy: 10/10 (100%)
  • Speed: 2.83s average (2.39s fastest, 4.59s slowest)
  • Cost: $0.99 per 1000 requests

Cheap, accurate, and reasonably fast. Not the absolute fastest (that crown goes to GPT-4o), but considering GPT-4o answered correctly only 1 out of 10 times, I’ll take slightly slower for way more reliable.

Key Takeaways

  • GPT-4o is fast but unreliable for this task. Great at sprinting, terrible at staying in its lane.
  • Grok-4 Fast Reasoning hits the sweet spot: cheap, fast enough, and dead-on accurate.
  • Azure’s o4-mini is also strong (100% accuracy, decent speed) but over 5x more expensive than Grok-4.
  • GPT-5 Nano is ridiculously cheap, but you’ll wait 8+ seconds for every answer, which breaks our workflow.

Where We Go From Here

A year ago, GPT-4o was one of the most advanced and reliable options. We built big chunks of our product around it. But time moves fast in AI land. What was cutting-edge last summer looks shaky today.

This little experiment with Grok-4 was eye-opening. Not only does it give us a better option for candidate evaluation, but it also makes me want to revisit other parts of our application where we blindly trusted GPT-4o.

Moral of the story: don’t get too attached to your models. The landscape shifts, and if you don’t keep testing, you might wake up one day realizing your AI is confidently giving you the wrong answers… in record speed.

So yes, GPT-4o, thank you for your service. But it looks like Grok-4 Fast Reasoning is taking your seat at the table.

Disclaimer: The articles reposted on this site are sourced from public platforms and are provided for informational purposes only. They do not necessarily reflect the views of MEXC. All rights remain with the original authors. If you believe any content infringes on third-party rights, please contact service@support.mexc.com for removal. MEXC makes no guarantees regarding the accuracy, completeness, or timeliness of the content and is not responsible for any actions taken based on the information provided. The content does not constitute financial, legal, or other professional advice, nor should it be considered a recommendation or endorsement by MEXC.
Share Insights

You May Also Like

Fed Rate Cuts May Push Crypto Prices Up As ‘Digital Gold’ Replaces TradFi

Fed Rate Cuts May Push Crypto Prices Up As ‘Digital Gold’ Replaces TradFi

The post Fed Rate Cuts May Push Crypto Prices Up As ‘Digital Gold’ Replaces TradFi appeared on BitcoinEthereumNews.com. FX168 Financial News (North America) reports that cryptocurrency polymath Eric Trump has said that President Trump’s consistent advocacy of a Federal Reserve interest rate cut could push up cryptocurrency prices significantly. A rate cut would make interest-bearing safe assets less attractive. It would prompt investors to turn to speculative assets such as stocks and Bitcoin (BTC-USD).  Historically, cryptocurrencies typically rise during easing cycles, albeit not in a straight line. A rate cut could trigger a short-term rally. It could also signal economic weakness, which could drag down the performance of risky assets. In Eric Trump’s view, the digital asset industry is here to stay for the long haul. From there, the existence of proven cloud mining platforms has high benefits. What is Cloud Mining? XiuShan Mining cloud mining is a way to allow users to mine cryptocurrencies by renting computing power (arithmetic). A third party provides that computing power. Besides, users don’t need to purchase expensive mining equipment or perform technical maintenance themselves.  Users simply purchase a certain number of arithmetic contracts from the specialized XiuShan Mining cloud mining platform. That’s responsible for purchasing, deploying, operating, and maintaining the equipment, including power supply and technical management. Users can receive cryptocurrency revenue generated by mining on a pro rata basis according to the arithmetic power and lease term.  How Does Cloud Mining Work? Rented Arithmetic: Users select and purchase arithmetic contracts on the XiuShan Mining platform, which are typically measured in terms of hash rates (e.g., giga-hashes per second) that determine the amount of mining power. Mining Operations: XiuShan Mining uses its large mining facilities in remote data centers to validate blockchain transactions using the arithmetic power rented by users to solve complex mathematical problems. Distribution of Revenues: Cryptocurrency revenues generated by mining are distributed to users on a regular basis…
Share
BitcoinEthereumNews2025/09/19 20:37
Share
Golden Trump Bitcoin Statue Unveiled Outside US Capitol Honoring His Crypto Support

Golden Trump Bitcoin Statue Unveiled Outside US Capitol Honoring His Crypto Support

Highlights: A massive golden statue of Trump holding Bitcoin drew attention near the U.S. Capitol. Organisers said the sculpture reflects Trump’s influence on the growing cryptocurrency market. The installation appeared the same day the Federal Reserve cut interest rates slightly. A giant golden statue of former President Donald Trump holding a Bitcoin was revealed outside the US Capitol on Wednesday. The statue was streamed live on Pump.fun, a well-known site for launching meme tokens. The statue, towering at 12 feet, was positioned opposite Union Square on the National Mall in Washington, DC, within walking distance of Capitol Hill and about a mile from the White House. Its central location ensured visibility to visitors and media alike. Tribute to our savior. pic.twitter.com/I03fRJnmDq — Donald J. Trump Golden Statue (@djtgst) September 17, 2025 Golden Trump Statue Honors Crypto Support According to a website tied to the stunt, the display honours Trump’s “unwavering commitment to advancing the future of finance through Bitcoin and decentralized technologies.” Organisers organized the display, which serves as both a political tribute and a nod to the growing influence of cryptocurrencies.  Hichem Zaghdoudi, one of the organisers, told local media, “This is a statement, this is to show everybody that without the president, we could never have had this mass adoption of Bitcoin, of cryptocurrencies, of all these big institutions buying Bitcoin. It shows that’s the future and this is our thank you, our statement, to the president.” Zaghdoudi added that the statue symbolises the view that Trump’s encouragement helped institutional investors enter the Bitcoin market. A livestream showed that artists crafted the sculpture from high-density foam. The lightweight material allowed multiple people to carry it into position. Social media clips showed machines carving Trump’s head and workers lifting the figure into place. The organiser mentioned that the statue stands 12 feet (3.6 meters) tall. He expressed hope that Trump would “walk out there and see it,” not realizing the president was visiting the United Kingdom at the time. Bringing the heat irl #DJTGST pic.twitter.com/KQ0Cwe1kdp — Donald J. Trump Golden Statue (@djtgst) September 15, 2025 Trump’s UK visit included high-profile meetings on tariffs, trade, and AI. Crypto leaders are urging him to support clearer digital asset rules, warning the UK could fall behind the EU, Singapore, and Dubai. Trump-Linked Crypto Moves Gain Attention The timing of the statue coincided with a Federal Reserve decision to cut interest rates by 25 basis points. Lower borrowing costs are often favourable for riskier assets, including cryptocurrencies. Trump has repeatedly pushed Jerome Powell to cut interest rates, often using harsh words toward the Fed Chair.  BREAKING: Federal Reserve officially cuts interest rates by 25bps. pic.twitter.com/mDsK4XaPiB — Bitcoin Magazine (@BitcoinMagazine) September 17, 2025 Trump supported cryptocurrencies during his presidential campaign last year. His campaign got strong support from the crypto industry. His family also increased their involvement through World Liberty Financial Inc. World Liberty Financial joined the Digital Freedom Fund PAC, led by the Winklevoss twins. Their goal is to make the US a top cryptocurrency hub. Some critics worry about conflicts of interest with Trump cutting regulations. Crypto fans are excited, hoping for the next big crypto boom. eToro Platform Best Crypto Exchange Over 90 top cryptos to trade Regulated by top-tier entities User-friendly trading app 30+ million users 9.9 Visit eToro eToro is a multi-asset investment platform. The value of your investments may go up or down. Your capital is at risk. Don’t invest unless you’re prepared to lose all the money you invest. This is a high-risk investment, and you should not expect to be protected if something goes wrong.
Share
Coinstats2025/09/18 22:42
Share
Why The Green Bay Packers Must Take The Cleveland Browns Seriously — As Hard As That Might Be

Why The Green Bay Packers Must Take The Cleveland Browns Seriously — As Hard As That Might Be

The post Why The Green Bay Packers Must Take The Cleveland Browns Seriously — As Hard As That Might Be appeared on BitcoinEthereumNews.com. Jordan Love and the Green Bay Packers are off to a 2-0 start. Getty Images The Green Bay Packers are, once again, one of the NFL’s better teams. The Cleveland Browns are, once again, one of the league’s doormats. It’s why unbeaten Green Bay (2-0) is a 8-point favorite at winless Cleveland (0-2) Sunday according to betmgm.com. The money line is also Green Bay -500. Most expect this to be a Packers’ rout, and it very well could be. But Green Bay knows taking anyone in this league for granted can prove costly. “I think if you look at their roster, the paper, who they have on that team, what they can do, they got a lot of talent and things can turn around quickly for them,” Packers safety Xavier McKinney said. “We just got to kind of keep that in mind and know we not just walking into something and they just going to lay down. That’s not what they going to do.” The Browns certainly haven’t laid down on defense. Far from. Cleveland is allowing an NFL-best 191.5 yards per game. The Browns gave up 141 yards to Cincinnati in Week 1, including just seven in the second half, but still lost, 17-16. Cleveland has given up an NFL-best 45.5 rushing yards per game and just 2.1 rushing yards per attempt. “The biggest thing is our defensive line is much, much improved over last year and I think we’ve got back to our personality,” defensive coordinator Jim Schwartz said recently. “When we play our best, our D-line leads us there as our engine.” The Browns rank third in the league in passing defense, allowing just 146.0 yards per game. Cleveland has also gone 30 straight games without allowing a 300-yard passer, the longest active streak in the NFL.…
Share
BitcoinEthereumNews2025/09/18 00:41
Share