Author: Jason Nelson Compiled by: Luffy, Foresight News summary Ethereum will undergo the Fusaka upgrade in December 2025, which will bring data scaling, DoS protection, and development tools. Peer Data Availability Sampling (PeerDAS) increases data block (blob) throughput by 8 times by "sampling data instead of storing complete data on full nodes". The new EIPs will set blob fees, limit block size, and add features such as pre-acknowledgment and P-256 signature support. The next major upgrade to the Ethereum network is imminent. This upgrade, named Fusaka (short for Fulu-Osaka), is scheduled to launch in December 2025 and will make significant adjustments to both the execution and consensus layers of Ethereum. The Fusaka upgrade is another milestone for Ethereum since the 2022 merger. The Shapela upgrade in 2023 introduced staking ETH for withdrawal; the Dencun upgrade in 2024 introduced prototype Danksharding technology and blobs; and the Pectra upgrade in 2025 improved validator flexibility and Layer 2 interoperability. According to the roadmap, the Fusaka upgrade aims to expand data capacity, enhance resistance to DoS attacks, and introduce new tools for developers and users. This upgrade has far-reaching implications. Fusaka is not a minor patch; it redesigns Ethereum's data availability management, blob pricing, and transaction protection mechanisms. Its success will depend on Ethereum's ability to scale to meet the growing demands of Layer 2 networks without causing network splits or excessively burdening node operators. PeerDAS: Sampling, rather than storing, all data The core feature of the Fusaka upgrade is PeerDAS, a new way of handling blobs. In Ethereum, a blob is a temporary data packet introduced with the prototype Danksharding technology in the Dencun upgrade. It allows rollups to submit large amounts of transaction data to the mainnet at low cost, thereby improving scalability without permanently increasing the blockchain state. This ensures redundancy, but it can also create bottlenecks as demand grows. In the current model, every full node in Ethereum must store all Layer 2 network blobs committed to the chain. PeerDAS changes this logic. Each node only needs to store a portion of the blob (approximately one-eighth) and relies on cryptographic reconstruction techniques to fill in the missing data fragments. This design verifies data availability through random sampling with an extremely low error probability of only one in 10²⁰ to 10²⁴. Through this distributed storage method, Ethereum can theoretically increase blob throughput by 8 times without requiring node operators to upgrade hardware or bandwidth. Rollups, which rely on blobs to publish compressed transaction data, are expected to be the most direct beneficiaries. blob's economy and flexibility The Fusaka upgrade also reshaped the pricing and management mechanisms for blobs. A key change is EIP-7918, which introduces a minimum reserve fee for blobs. Under the current rules, when execution layer gas fees dominate, blob prices can drop to near zero, leading to inefficient usage. The minimum reserve fee ensures that there is always a baseline cost for blob usage, forcing Layer 2 to pay for the storage and bandwidth it consumes. Another mechanism is EIP-7892, which introduces a fork that only adjusts blob parameters. This allows Ethereum clients to adjust blob throughput without a full hard fork, aiming to give developers the flexibility to respond to unpredictable Layer 2 demands without waiting for the next planned upgrade. Strengthen attack and defense Scaling up also means expanding Ethereum's attack surface. The Fusaka upgrade includes a series of adjustments to limit extreme scenarios and protect the network from DoS attacks: EIP-7823: Limits the input size of MODEXP operations to 8192 bits; EIP-7825: Sets the maximum gas consumption per transaction to 2²⁴ units; EIP-7883: Improves gas costs for large indices in MODEXP to better match computational workload. EIP-7934: Limits the execution layer block size to 10MB. These adjustments collectively reduce the risk of client overload, propagation stagnation, or network instability caused by extreme transactions or very large blocks. New tools for users and developers The Fusaka upgrade also focuses on improving ease of use. For users, EIP-7917 introduces pre-confirmation support. This allows wallets and applications to preview the validator proposal schedule, enabling users to lock in the certainty that their transactions will be included in subsequent blocks, thereby reducing latency and uncertainty regarding transaction confirmation. For developers, the Fusaka upgrade adds two important new features: CLZ opcode is suitable for cryptographic algorithms and contract optimization. EIP-7951 provides native secp256r1 (P-256) signature verification. This is an elliptic curve signature commonly used in hardware devices and mobile systems, and its inclusion will improve compatibility and account abstraction capabilities. These adjustments aim to lower the barrier to entry for application developers and pave the way for new wallet designs and security models. ETH Holders Should Know For ordinary Ethereum users, no action is required for the Fusaka upgrade. Account balances, tokens, and applications will function normally. The official Ethereum website emphasizes that users should be wary of scams requesting ETH upgrades or transfers; such actions are not required for the upgrade. The primary responsibility falls on the validators and node operators, who must synchronously upgrade both the execution and consensus layer clients. Coordination is crucial: if validators are out of sync, the network may face downtime or temporary forks. Following a series of successful testnet activations, the Fusaka upgrade is scheduled to launch on the Ethereum mainnet on December 3, 2025. Fusaka's upgraded Ethereum future The Fusaka upgrade is one of the boldest moves on Ethereum's roadmap since the merger. It attempts to achieve three major goals simultaneously—increased blob capacity, enhanced defenses, and updated developer tools—through a single coordinated release. Testing and development are underway, with the client team focusing on PeerDAS performance, blob pricing models, and compatibility between the execution and consensus layer software. If the upgrade is successful, Fusaka is expected to be a turning point for Ethereum in preparing for the next wave of Layer 2 network adoption and enhancing its scalability.Author: Jason Nelson Compiled by: Luffy, Foresight News summary Ethereum will undergo the Fusaka upgrade in December 2025, which will bring data scaling, DoS protection, and development tools. Peer Data Availability Sampling (PeerDAS) increases data block (blob) throughput by 8 times by "sampling data instead of storing complete data on full nodes". The new EIPs will set blob fees, limit block size, and add features such as pre-acknowledgment and P-256 signature support. The next major upgrade to the Ethereum network is imminent. This upgrade, named Fusaka (short for Fulu-Osaka), is scheduled to launch in December 2025 and will make significant adjustments to both the execution and consensus layers of Ethereum. The Fusaka upgrade is another milestone for Ethereum since the 2022 merger. The Shapela upgrade in 2023 introduced staking ETH for withdrawal; the Dencun upgrade in 2024 introduced prototype Danksharding technology and blobs; and the Pectra upgrade in 2025 improved validator flexibility and Layer 2 interoperability. According to the roadmap, the Fusaka upgrade aims to expand data capacity, enhance resistance to DoS attacks, and introduce new tools for developers and users. This upgrade has far-reaching implications. Fusaka is not a minor patch; it redesigns Ethereum's data availability management, blob pricing, and transaction protection mechanisms. Its success will depend on Ethereum's ability to scale to meet the growing demands of Layer 2 networks without causing network splits or excessively burdening node operators. PeerDAS: Sampling, rather than storing, all data The core feature of the Fusaka upgrade is PeerDAS, a new way of handling blobs. In Ethereum, a blob is a temporary data packet introduced with the prototype Danksharding technology in the Dencun upgrade. It allows rollups to submit large amounts of transaction data to the mainnet at low cost, thereby improving scalability without permanently increasing the blockchain state. This ensures redundancy, but it can also create bottlenecks as demand grows. In the current model, every full node in Ethereum must store all Layer 2 network blobs committed to the chain. PeerDAS changes this logic. Each node only needs to store a portion of the blob (approximately one-eighth) and relies on cryptographic reconstruction techniques to fill in the missing data fragments. This design verifies data availability through random sampling with an extremely low error probability of only one in 10²⁰ to 10²⁴. Through this distributed storage method, Ethereum can theoretically increase blob throughput by 8 times without requiring node operators to upgrade hardware or bandwidth. Rollups, which rely on blobs to publish compressed transaction data, are expected to be the most direct beneficiaries. blob's economy and flexibility The Fusaka upgrade also reshaped the pricing and management mechanisms for blobs. A key change is EIP-7918, which introduces a minimum reserve fee for blobs. Under the current rules, when execution layer gas fees dominate, blob prices can drop to near zero, leading to inefficient usage. The minimum reserve fee ensures that there is always a baseline cost for blob usage, forcing Layer 2 to pay for the storage and bandwidth it consumes. Another mechanism is EIP-7892, which introduces a fork that only adjusts blob parameters. This allows Ethereum clients to adjust blob throughput without a full hard fork, aiming to give developers the flexibility to respond to unpredictable Layer 2 demands without waiting for the next planned upgrade. Strengthen attack and defense Scaling up also means expanding Ethereum's attack surface. The Fusaka upgrade includes a series of adjustments to limit extreme scenarios and protect the network from DoS attacks: EIP-7823: Limits the input size of MODEXP operations to 8192 bits; EIP-7825: Sets the maximum gas consumption per transaction to 2²⁴ units; EIP-7883: Improves gas costs for large indices in MODEXP to better match computational workload. EIP-7934: Limits the execution layer block size to 10MB. These adjustments collectively reduce the risk of client overload, propagation stagnation, or network instability caused by extreme transactions or very large blocks. New tools for users and developers The Fusaka upgrade also focuses on improving ease of use. For users, EIP-7917 introduces pre-confirmation support. This allows wallets and applications to preview the validator proposal schedule, enabling users to lock in the certainty that their transactions will be included in subsequent blocks, thereby reducing latency and uncertainty regarding transaction confirmation. For developers, the Fusaka upgrade adds two important new features: CLZ opcode is suitable for cryptographic algorithms and contract optimization. EIP-7951 provides native secp256r1 (P-256) signature verification. This is an elliptic curve signature commonly used in hardware devices and mobile systems, and its inclusion will improve compatibility and account abstraction capabilities. These adjustments aim to lower the barrier to entry for application developers and pave the way for new wallet designs and security models. ETH Holders Should Know For ordinary Ethereum users, no action is required for the Fusaka upgrade. Account balances, tokens, and applications will function normally. The official Ethereum website emphasizes that users should be wary of scams requesting ETH upgrades or transfers; such actions are not required for the upgrade. The primary responsibility falls on the validators and node operators, who must synchronously upgrade both the execution and consensus layer clients. Coordination is crucial: if validators are out of sync, the network may face downtime or temporary forks. Following a series of successful testnet activations, the Fusaka upgrade is scheduled to launch on the Ethereum mainnet on December 3, 2025. Fusaka's upgraded Ethereum future The Fusaka upgrade is one of the boldest moves on Ethereum's roadmap since the merger. It attempts to achieve three major goals simultaneously—increased blob capacity, enhanced defenses, and updated developer tools—through a single coordinated release. Testing and development are underway, with the client team focusing on PeerDAS performance, blob pricing models, and compatibility between the execution and consensus layer software. If the upgrade is successful, Fusaka is expected to be a turning point for Ethereum in preparing for the next wave of Layer 2 network adoption and enhancing its scalability.

Ethereum's boldest scaling bet in history? A detailed analysis of the key aspects of the Fusaka upgrade.

2025/11/11 18:00

Author: Jason Nelson

Compiled by: Luffy, Foresight News

summary

  • Ethereum will undergo the Fusaka upgrade in December 2025, which will bring data scaling, DoS protection, and development tools.
  • Peer Data Availability Sampling (PeerDAS) increases data block (blob) throughput by 8 times by "sampling data instead of storing complete data on full nodes".
  • The new EIPs will set blob fees, limit block size, and add features such as pre-acknowledgment and P-256 signature support.

The next major upgrade to the Ethereum network is imminent. This upgrade, named Fusaka (short for Fulu-Osaka), is scheduled to launch in December 2025 and will make significant adjustments to both the execution and consensus layers of Ethereum.

The Fusaka upgrade is another milestone for Ethereum since the 2022 merger. The Shapela upgrade in 2023 introduced staking ETH for withdrawal; the Dencun upgrade in 2024 introduced prototype Danksharding technology and blobs; and the Pectra upgrade in 2025 improved validator flexibility and Layer 2 interoperability.

According to the roadmap, the Fusaka upgrade aims to expand data capacity, enhance resistance to DoS attacks, and introduce new tools for developers and users.

This upgrade has far-reaching implications. Fusaka is not a minor patch; it redesigns Ethereum's data availability management, blob pricing, and transaction protection mechanisms. Its success will depend on Ethereum's ability to scale to meet the growing demands of Layer 2 networks without causing network splits or excessively burdening node operators.

PeerDAS: Sampling, rather than storing, all data

The core feature of the Fusaka upgrade is PeerDAS, a new way of handling blobs.

In Ethereum, a blob is a temporary data packet introduced with the prototype Danksharding technology in the Dencun upgrade. It allows rollups to submit large amounts of transaction data to the mainnet at low cost, thereby improving scalability without permanently increasing the blockchain state.

This ensures redundancy, but it can also create bottlenecks as demand grows. In the current model, every full node in Ethereum must store all Layer 2 network blobs committed to the chain.

PeerDAS changes this logic. Each node only needs to store a portion of the blob (approximately one-eighth) and relies on cryptographic reconstruction techniques to fill in the missing data fragments. This design verifies data availability through random sampling with an extremely low error probability of only one in 10²⁰ to 10²⁴.

Through this distributed storage method, Ethereum can theoretically increase blob throughput by 8 times without requiring node operators to upgrade hardware or bandwidth. Rollups, which rely on blobs to publish compressed transaction data, are expected to be the most direct beneficiaries.

blob's economy and flexibility

The Fusaka upgrade also reshaped the pricing and management mechanisms for blobs.

A key change is EIP-7918, which introduces a minimum reserve fee for blobs. Under the current rules, when execution layer gas fees dominate, blob prices can drop to near zero, leading to inefficient usage. The minimum reserve fee ensures that there is always a baseline cost for blob usage, forcing Layer 2 to pay for the storage and bandwidth it consumes.

Another mechanism is EIP-7892, which introduces a fork that only adjusts blob parameters. This allows Ethereum clients to adjust blob throughput without a full hard fork, aiming to give developers the flexibility to respond to unpredictable Layer 2 demands without waiting for the next planned upgrade.

Strengthen attack and defense

Scaling up also means expanding Ethereum's attack surface. The Fusaka upgrade includes a series of adjustments to limit extreme scenarios and protect the network from DoS attacks:

  • EIP-7823: Limits the input size of MODEXP operations to 8192 bits;
  • EIP-7825: Sets the maximum gas consumption per transaction to 2²⁴ units;
  • EIP-7883: Improves gas costs for large indices in MODEXP to better match computational workload.
  • EIP-7934: Limits the execution layer block size to 10MB.

These adjustments collectively reduce the risk of client overload, propagation stagnation, or network instability caused by extreme transactions or very large blocks.

New tools for users and developers

The Fusaka upgrade also focuses on improving ease of use.

For users, EIP-7917 introduces pre-confirmation support. This allows wallets and applications to preview the validator proposal schedule, enabling users to lock in the certainty that their transactions will be included in subsequent blocks, thereby reducing latency and uncertainty regarding transaction confirmation.

For developers, the Fusaka upgrade adds two important new features:

  • CLZ opcode is suitable for cryptographic algorithms and contract optimization.
  • EIP-7951 provides native secp256r1 (P-256) signature verification. This is an elliptic curve signature commonly used in hardware devices and mobile systems, and its inclusion will improve compatibility and account abstraction capabilities.

These adjustments aim to lower the barrier to entry for application developers and pave the way for new wallet designs and security models.

ETH Holders Should Know

For ordinary Ethereum users, no action is required for the Fusaka upgrade. Account balances, tokens, and applications will function normally. The official Ethereum website emphasizes that users should be wary of scams requesting ETH upgrades or transfers; such actions are not required for the upgrade.

The primary responsibility falls on the validators and node operators, who must synchronously upgrade both the execution and consensus layer clients. Coordination is crucial: if validators are out of sync, the network may face downtime or temporary forks.

Following a series of successful testnet activations, the Fusaka upgrade is scheduled to launch on the Ethereum mainnet on December 3, 2025.

Fusaka's upgraded Ethereum future

The Fusaka upgrade is one of the boldest moves on Ethereum's roadmap since the merger. It attempts to achieve three major goals simultaneously—increased blob capacity, enhanced defenses, and updated developer tools—through a single coordinated release.

Testing and development are underway, with the client team focusing on PeerDAS performance, blob pricing models, and compatibility between the execution and consensus layer software. If the upgrade is successful, Fusaka is expected to be a turning point for Ethereum in preparing for the next wave of Layer 2 network adoption and enhancing its scalability.

Sorumluluk Reddi: Bu sitede yeniden yayınlanan makaleler, halka açık platformlardan alınmıştır ve yalnızca bilgilendirme amaçlıdır. MEXC'nin görüşlerini yansıtmayabilir. Tüm hakları telif sahiplerine aittir. Herhangi bir içeriğin üçüncü taraf haklarını ihlal ettiğini düşünüyorsanız, kaldırılması için lütfen service@support.mexc.com ile iletişime geçin. MEXC, içeriğin doğruluğu, eksiksizliği veya güncelliği konusunda hiçbir garanti vermez ve sağlanan bilgilere dayalı olarak alınan herhangi bir eylemden sorumlu değildir. İçerik, finansal, yasal veya diğer profesyonel tavsiye niteliğinde değildir ve MEXC tarafından bir tavsiye veya onay olarak değerlendirilmemelidir.

Ayrıca Şunları da Beğenebilirsiniz

Tether's value surges over 40-fold, with a $500 billion valuation hinting at both capital and narrative ambitions.

Tether's value surges over 40-fold, with a $500 billion valuation hinting at both capital and narrative ambitions.

By Nancy, PANews News that Tether is in talks to raise funds at a $500 billion valuation has propelled it to new heights. If the deal goes through, its valuation would leap to the highest of any global crypto company, rivaling even Silicon Valley unicorns like OpenAI and SpaceX. Tether, with its strong capital base, boasts profit levels that have driven its price-to-earnings ratio beyond the reach of both crypto and traditional institutions. Yet, its pursuit of a new round of capital injection at a high valuation serves not only as a powerful testament to its profitability but also as a means of shaping the market narrative through capital operations, building momentum for future business and market expansion. Net worth soared more than 40 times in a year, and well-known core investors are being evaluated. On September 24, Bloomberg reported that stablecoin giant Tether is planning to sell approximately 3% of its shares at a valuation of $15 billion to $20 billion. If the deal goes through, Tether's valuation could reach approximately $500 billion, making it one of the world's most valuable private companies and potentially setting a record for the largest single financing in the history of the crypto industry. By comparison, in November 2024, Cantor Fitzgerald, a prominent US financial services firm, acquired approximately 5% of Tether for $600 million, valuing the company at approximately $12 billion. This means Tether's value has increased more than 40-fold in less than a year. However, since Cantor Fitzgerald's former CEO, Howard Lutnick, is currently the US Secretary of Commerce, the deal was interpreted as a "friendship price" that could potentially garner more political support for Tether. Tether's rapid rise in value is largely due to its dominant market share, impressive profit margins, and solid financial position. According to Coingecko data, as of September 24th, USDT's market capitalization exceeded $172 billion, setting a new record and accounting for over 60% of the market share. Furthermore, Tether CEO Paolo Ardoino recently admitted that Tether's profit margin is as high as 99%. The second-quarter financial report further demonstrates Tether's robust financial position, with $162.5 billion in reserve assets exceeding $157.1 billion in liabilities. "Tether has about $5.5 billion in cash, Bitcoin and equity assets on its balance sheet. If calculated based on the approximately $173 billion USDT in circulation and a 4% compound yield, and if it raises funds at a valuation of $500 billion, it means that its enterprise value to annualized return (PE) multiple is about 68 times," Dragonfly investor Omar pointed out. Sources familiar with the matter revealed that the disclosed valuation represents the upper end of the target range, and the final transaction value could be significantly lower. Negotiations are at an early stage, and investment details are subject to change. The transaction involves the issuance of new shares, not the sale of shares by existing investors. Paolo Ardoino later confirmed that the company is actively evaluating the possibility of raising capital from a number of prominent core investors. Behind the high valuation of external financing, the focus is on business expansion and compliance layout Tether has always been known to be "rich." The stablecoin giant is expected to generate $13.7 billion in net profit in 2024, thanks to interest income from U.S. Treasury bonds and cash assets. For any technology or financial company, this profit level is more than enough to support continued expansion. However, Tether is now launching a highly valued external financing plan. This is not only a capital operation strategy, but also relates to business expansion and regulatory compliance. According to Paolo Ardoino, Tether plans to raise funds to expand the company's strategic scale in existing and new business lines (stablecoins, distribution coverage, artificial intelligence, commodity trading, energy, communications, and media) by several orders of magnitude. He disclosed in July this year that Tether has invested in over 120 companies to date, and this number is expected to grow significantly in the coming months and years, with a focus on key areas such as payment infrastructure, renewable energy, Bitcoin, agriculture, artificial intelligence, and tokenization. In other words, Tether is trying to transform passive income that depends on the interest rate environment into active growth in cross-industry investments. But pressure is mounting. With the increasing number of competitors and the Federal Reserve resuming its interest rate cut cycle, Tether's main source of profit faces downward risks. The company has previously emphasized that its external investments are entirely sourced from its own profits. A decline in earnings expectations would mean a shrinking pool of funds available for expansion. However, the injection of substantial financing would provide Tether with ample liquidity for its investment portfolio. What truly necessitates Tether's capital and resources is expansion into the US market. With the implementation of the US GENIUS Act, stablecoin issuance enters a new compliance framework. This presents both a challenge and an opportunity for Tether. This is especially true after competitor Circle's successful IPO and capital market recognition, with its valuation soaring to $30 billion, further magnifying Tether's compliance shortcomings. On the one hand, USDT has long been on the gray edge, walking on the edge of regulation. Tether has successfully attracted public attention through extremely small equity transactions and huge valuations, and has also used this to enhance the market narrative, thereby breaking the negative perception of the outside world and significantly enhancing its own influence. On the other hand, unlike Circle's IPO, Tether has chosen a different path to gain mainstream market acceptance. In September of this year, Tether announced that it would launch a US-native stablecoin, USAT, by the end of the year. Unlike the widely circulated USDT, USAT is designed specifically for businesses and institutions operating under US regulations. It is issued by Anchorage Digital, a licensed digital asset bank, and operates on Tether's global distribution network. This allows Tether to retain control over its core profits while meeting regulatory compliance requirements. The personnel arrangements also make this new card intriguing. USAT's CEO is Bo Hines (see also: 29-Year-Old Crypto Upstart Bo Hines: From White House Crypto Liaison to Rapid Assignment to Tether's US Stablecoin ). In August of this year, Tether appointed him as its Digital Asset and US Strategy Advisor, responsible for developing and executing Tether's US market development strategy and strengthening communication with policymakers. As previously reported by PANews, Hines previously served as the White House Digital Asset Policy Advisor, where he was responsible for promoting crypto policy and facilitating the passage of the GENIUS Act, a US stablecoin, and has accumulated extensive connections in the political and business circles. This provides USAT with an additional layer of protection when entering the US market. Cantor Fitzgerald, the advisor to this financing round, is also noteworthy. As one of the Federal Reserve's designated principal dealers, Cantor boasts extensive experience in investment banking and private equity, building close ties to Wall Street's political and business networks. Furthermore, Cantor is the primary custodian of Tether's reserve assets, providing firsthand insight into the latter's fund operations. For external investors, Cantor's involvement not only adds credibility to Tether's financing valuation but also provides added certainty for the launch of USAT in the US market.
Paylaş
PANews2025/09/24 15:52